Highly selective and prolonged depletion of mitochondrial glutathione in astrocytes markedly increases sensitivity to peroxynitrite.
نویسندگان
چکیده
Glutathione, a major endogenous antioxidant, is found in two intracellular pools in the cytoplasm and the mitochondria. To investigate the importance of the smaller mitochondrial pool, we developed conditions based on treatment with ethacrynic acid that produced near-complete and highly selective depletion of mitochondrial glutathione in cultured astrocytes. Recovery of mitochondrial glutathione was only partial over several hours, suggesting slow net uptake from the cytoplasm. Glutathione depletion alone did not significantly affect mitochondrial membrane potential, ATP content, or cell viability when assessed after 24 hr, although the activities of respiratory chain complexes were altered. However, these astrocytes showed a greatly enhanced sensitivity to 3-morpholinosydnonimine, a peroxynitrite generator. Treatment with 200 microm 3-morpholinosydnonimine produced decreases within 3 hr in mitochondrial membrane potential and ATP content and caused the release of lactate dehydrogenase, contrasting with preservation of these properties in control cells. These properties deteriorated further by 24 hr in the glutathione-depleted cells and were associated with morphological changes indicative of necrotic cell death. This treatment enhanced the alterations in activities of the respiratory chain complexes observed with glutathione depletion alone. Cell viability was markedly improved by cyclosporin A, suggesting a role for the mitochondrial permeability transition in the astrocytic death. These studies provide the most direct evidence available for any cell type on the roles of mitochondrial glutathione. They demonstrate the critical importance of this metabolite pool in protecting against peroxynitrite-induced damage in astrocytes and indicate a key contribution in determining the activities of respiratory chain components.
منابع مشابه
Involvement of Cytochrome P-450 in n-Butyl Nitrite-Induced Hepatocyte Cytotoxicity
Addition of n-butyl nitrite to isolated rat hepatocytes caused an immediate glutathione depletion followed by an inhibition of mitochondrial respiration, inhi- bition of glycolysis and ATP depletion. At cytotoxic butyl nitrite concentrations, lipid peroxidation occurred before the plasma membrane was disrupted. Cytochrome P-450 inhibitors inhibited peroxynitrite formation and prev...
متن کاملIntracellular pH-dependent peroxynitrite-evoked synergistic death of glucose-deprived astrocytes.
Previously, we reported that glucose-deprived astrocytes were highly vulnerable to peroxynitrite (ONOO-). Here we demonstrate that the increased vulnerability caused by glucose deprivation and ONOO- depends on intracellular pH. The ONOO- releasing reagent 3-morpholinosydnonimine (SIN-1) markedly induced the release of lactate dehydrogenase (LDH, the marker of cytotoxicity) in glucose-deprived a...
متن کاملAdaptive responses to peroxynitrite: increased glutathione levels and cystine uptake in vascular cells.
We and others recently demonstrated increased glutathione levels, stimulated cystine uptake, and induced gamma-glutamylcysteinyl synthase (gamma-GCS) in vascular cells exposed to nitric oxide donors. Here we report the effects of peroxynitrite on glutathione levels and cystine uptake. Treatment of bovine aortic endothelial and smooth muscle cells with 3-morpholinosydnonimine (SIN-1), a peroxyni...
متن کاملHepatic mitochondrial DNA depletion after an alcohol binge in mice: probable role of peroxynitrite and modulation by manganese superoxide dismutase.
Alcohol consumption increases reactive oxygen species (ROS) formation, which can damage mitochondrial DNA (mtDNA) and alter mitochondrial function. To test whether manganese superoxide dismutase (MnSOD) modulates acute alcohol-induced mitochondrial alterations, transgenic MnSOD-overexpressing (MnSOD(+++)) mice, heterozygous knockout (MnSOD(+/-)) mice, and wild-type (WT) littermates were sacrifi...
متن کاملPeroxynitrite protects neurons against nitric oxide-mediated apoptosis. A key role for glucose-6-phosphate dehydrogenase activity in neuroprotection.
Peroxynitrite is thought to be a nitric oxide-derived neurotoxic effector molecule involved in the disruption of key energy-related metabolic targets. To assess the consequences of such interference in cellular glucose metabolism and viability, we studied the possible modulatory role played by peroxynitrite in glucose oxidation in neurons and astrocytes in primary culture. Here, we report that ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 24 37 شماره
صفحات -
تاریخ انتشار 2004